
Convolution and Correlation

Introduction

The principle behind these two operations is the essence of DSP filter implementations. The basis of 
convolution and correlation is the ubiquitous 'multiply/accumulate' that all the example systems in 
these papers have used to date.

Convolution needn't be convoluted!

The starting point is that you have two sampled data signal sequences. For both discrete correlation 
and convolution, we 'run one set of samples past the other'. Of course we have to pause every 
sampling period when the sets are lined up and multiply then all out individually. Then we sum 
them and move on by one sample period and do it all again, repeating until one set is completely 
past the other. You can see how difficult this is to explain in words although it isn't complicated 
really, see fig 1. The only difference between correlation and convolution is that for convolution 
you have to 'flip' over one of the sample sets so that the set is back to front. So why worry about the 
difference between correlation and convolution? Correlation can be very useful when looking for 
signals in noise, or when looking for a wanted signal among unwanted ones. However, convolution 
has a particular advantage in that the time domain act of convolution is the SAME as multiplying in 
the frequency domain. Because this is going to give us the basis of big computational performance 
gains we shall concentrate on it.

Fig 1 discrete convolution of samples
The usual expression defining this is:

where y(n) is the nth output sample, m is the data set size, x and p are the two sets, *=convolution.



which enables us to see just how many operations are involved. It turns out to be m squared when 
both data sets are m elements long. For practical reasons the arrays have to be padded with 0's in 
order to do the multiply/sum without error. In the above each set is 6 elements but when at the 
beginning, when bn is adjacent to b0, the 5 other elements of each set need to be multiplied by zero. 
Thus for the above there would be 10 elements in each set ( including padding 0's) and the 
operation would require 100 multiplications, to say nothing of the summations each sample shift. In 
case you are not sure about the fundamental relevance of convolution, Fig 2 shows the structure 
required in terms of delays, multiplies and adds. I hope you recognise the architecture that is the 
foundation of filter systems.

Fig 2 Matched filter ( after G.A.King 1990)

The notation is slightly different to that used in previous parts of this series, but z-1 is a single 
sample delay, X in a circle is multiply and the discrete summation symbol Σ was '+' in previous 
papers, whilst the two input sample sets are x(n) and h(m).

Fast convolution by Fast Fourier Transform

Remembering that time domain convolution is the same as multiplying the frequency spectra of the 
two data sets, people wondered if it might be a lot faster to Fourier transform the two sets and then 
just multiply them together. If there were 10 elements in each set then only 10 multiplies would be 
needed instead of 100 to do the job in the time domain. This has clear attractions if the job is to be 
done by software. Formally, fast convolution as it is called uses m log m multiplies ( 10 for 10 data 
points in each set). By working in the frequency domain filters could be implemented with just 
array multiplication. If you are curious about this,it works because whereas time domain samples 
represent discrete signal values taken at a given moment, when transformed into the frequency 
domain the frequency components obtained have an existence over all time. Hence no need to 
worry about the shifting and adding etc. You can then inverse transform the components to get back 
a time domain output. 
Of course this does assume that it is possible to Fourier transform quickly and in fact processors 
have been built that have Arithmetic units optimised to do this on an array of points in a single 



operation. A single dimensional array is called a Vector and Vector Signal Processors have been 
around for more than fifteen years. In 1990 I used such a processor. It had the ability to implement a 
32 stage FIR filter using 128 real samples in one go, and taking just 382 microseconds to do it. 
That's just under 3 microseconds per sample, or a sampling rate of 333 KHz. 

Anyway, Fig 3 below defines the algorithm. As an aside consider the filter in Fig 2. The set h(m) 
could of course be the filter coefficients derived from the sampled desired impulse response. 

Fig 3 Fast Convolution ( G.A.King)

Conclusions

The justification for this leans heavily on the ability to do the algorithm above in substantially less 
time than the shift,multiply, add option. Again the other presumption is that all the processing is to 
be done with software running on a dedicated processor. However, it is possible to implement in 
hardware ( to a given level of complexity), using the programmable 'sea of gates' EPLD devices. 
Remembering the rationale for these articles is to prepare for evaluating PICs and other 
microcontrollers for use in DSP we shall next look at how to do FFT's.
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