Software Defined Radio

Graham King G3XSD

Content

- The context of the rise of Software Defined Radio (SDR)
- The reliance on Digital Signal Processing (DSP)
- General architectures
- Technical discussion of significant constituent parts
- Conclusions and Questions

What is it? A radio system in which:

- Most of the complex signal handling uses DSP
 - Filters
 - Noise Reduction/processing
 - Voice compression etc etc
- Provides RF Spectrum and waterfall displays using FFTs, in Panadapter style
- User interface is through a computer
- Often using some form of direct conversion
- Uses a computer to run software and control rig

Who wants it?

- Mainly radio manufacturers
 - Why? Progress is so fast these days that they want to create systems that could be upgraded, updated easily
 - This requires a near universal set of hardware (computers are universal machines)
 - This also requires functionality/performance/control defined by software
- But also, Radio Amateurs benefit from clever systems with reduced obsolescence

The simplest architecture (Softrock)

Simplified SDR Receiver

What is DSP?

Digital Signal Processing

- Signals are sampled, and the sampled data sequences are processed by:
- shift registers,flipflops,logic gates,
- correlators/fast convolution
- FFT/DCT butterflies
- Various other transforms (e.g.Hilbert)
- ALL implemented as recurrence formulae in SOFTWARE running on a DS Processor or as logic in a FPGA or such like.

Digital Signal Processor?

- A staggeringly fast CPU, usually with multiple parallel ALUs and multiple parallel FFT butterflies
- Most are SIMD single instruction multiple data set i.e. can perform 128 FFTs or more, all at once – BANG! Done!
- FPGA Field Programmable Gate Array chips

 implement your recurrence formula by
 interconnecting gates according to your design

Direct Conversion?

- What was wrong with the TRF?
 - Gain at HF and also Selectivity (BW=fr/Q)
- Has anything changed since the triode and LC tuned circuits?
 - DSP brick wall filters
 - SAW filters (to 3 GHz)
 - FET RF amplifiers etc etc......
- Time to give it another go?

Anything else involved? Yes, A to D and D to A conversion

- Recent developments of cheap high resolution and fast chips for this:
- Fast? Remember the Nyquist frequency. To work up to 30MHz you must sample at least 60 Mb/s to avoid aliasing
- Resolution? 32 bit now possible reduces quantisation error (noise)

How do analogue and digital ccts relate?

These are functionally the same!

This can be scaled up hugely How do you do an FFT1?

How do you do an FFT (DFT)2

An 8 point transform

 12 Butterflies! (Decimation in Time algorithm -Sande-Tukey)

The software is not so bad!

Zoran Vector Signal Processor Assembler

```
Begin
/* Load the 16 data points into internal RAM EVEN points first*/
LD NMPT:8,MBS:8,MSS:2,MBA:SIGNAL
/* Store consecutively /*
ST NMPT:8,MBS:8,MSS:8, MBA:REORDER
/*Read in the odd sample points and reverse order them */
LD NMPT:8,MBS:8;MSS:2,MBA:SIGNAL+1
Load the other half beginning with sample 1, e.g. 1,3,5,7,9,11,13,15. RV=1
STB NMPT:8,MBS:8,MSS:8, MBAB:REORDER+8
 /* Load the re-ordered data back into the processor */
 LD NMPT:16,MBS:16,MSS:16,MBA:REORDER
 /* Do the FFT DIT in 4 passes */
 FFT NMBT:8, R:1,FPS:1,LPS:8,I:0,RS:1
 /* Output to memory for use by other routines/methods etc */
 ST NMPT:16,MBS:16,MSS:16,RS:0,MBA:RESULT
```

IQ modulation/demodulation one more concept!

- Does it all! PSK QPSK QPAM AM [SSB*] CW FM +
- 2 sigs, Sine and Cosine, interpretive algorithms
 - * in combination with additional bits! See later....

Architecture options

- All we have talked of is usually provided in a box
- Add PSU and PC,antenna (and a TX if box is RX only).
- Or if SDR Rx in a stick, just plug in to a USB port.

Receivers

Receiver

- There are many variations. Some use a traditional radio front-end and operate on an IF signal
- Increasingly popular is Direct conversion, giving a wide band front end to an IQ demodulator followed by SDR techniques
- We shall concentrate on Direct conversion
 - Softrock, Fun Cube, SDR-Radio,RTL-SDR, and all sticks using the RL2832U/Elonics E4000 chip

Direct conversion receiver

http://vaedrah.angelfire.com

Software Defined Radio (SDR) Receiver Architecture - Direct Conversion

Transmitter

Phasing Method

Hilbert Transform 1

- In signal processing, the Hilbert transform is a linear operator which takes a function, u(t), and produces a function, H(u)(t), with the same domain
- There are many Hilbert Transforms but the one we are interested in is an operator that shifts a signal by -90 degrees: All Pass
- This can be thought of as the convolution of u(t) with the function $h(t) = 1/(\pi t)$

Hilbert Transform 2

-90 in software

- The transform is equivalent to:two all-pass IIR filters whose phase difference is approximately 90 degrees over a range of frequencies symmetric around Nyquist/2
- For this there is transfer function expressed as a recurrence formula
- This job can be done by 8 multiplies and a final scaling by 0.5 (Niemitelo 2003 http://yehar.com/blog/?p=368)

Hilbert transform 3

- Refer to the Phasing Method diagram.....
 - Hilbert transforms are used twice
 - Once for the carrier.....easy: a single frequency
 - Once for the AF input: not so easy 300Hz-2.4KHz
 - Delay is to compensate for the group delay in the transform.
 - This was a problem for hardware implementations
 - See next slide
 - It is still a problem for software implementations!
 - See Slide Hilbert 2

Hilbert Transform (-90 degs)

Hardware implementation

Can we make it easier?

- Yes, devise a circuit that does not require the
 -90 degree phase shift consistent and accurate over 300Hz to 2.4 Khz
- An alternative requiring two carriers BUT using two single frequency -90 degree shifts only was designed by Weaver
- We now call it the THIRD method
- In near monopoly use for Software Defined Radio

Third method (Weaver)

Can't quite see it?

Key requirement: understanding At O/P of 1st Balanced modulator: 2(cos A Cosb) = Cos (A-B) + Cos (A+B) 2(COSASinB) = Sin(A+B) + Sin(A-B) Low passfilter removes Cos(A+B), Sin(A+B) heaving! Cos(A-B) and Sin (A-B) For simplicity call these : Gos C and Sin C The 2nd Balanced modulator inserts a new second carrier, call it Cos D and Sin D

product to sum trig whentities At % of 2nd Balanced modulator: 2(Gos D Gos C) = Gos (D+C) + Gos (D-C) 2 (Sin D Sin C) = Cos(D+C) - Cos(D-C) At the Summation: Adding the two: Cos(D+c) + Cos(D-c) + Cos(D+c) - Cos(D-c) = 2 cos(D+c), the USB. Subtracting the two: Cos(D+C) + Cos(D-C) - Cos(D+C) - Cos(D-C) = Gos(D-C)-(-Gs(D-C)) = 2 Cos (D-c), the 1'SB QED !

What have we covered so far?

- Most of the building blocks of TX and RX in SDR:
 - IQ demodulators in RX
 - Need for 16 or 32 bit A/D and fast D/A
 - Hilbert Transforms
 - SSB generation by the third method for TX
 - Doing the signal processing with a DSProcessor
 - What about doing the signal processing with an FPGA (PLA)?

FPGA

- Are used when DSP functions are committed to programmable hardware instead of being software executed by a Digital Signal Processor
- Transceiver functions are selected by I/O port control of the FPGA by a PC. Thus it is Software Defined Radio
- Many architectures: Logic blocks based on LUT (Xilinx), MUX (Actel), PLA (Altera), Sea of Gates
- Different layouts and interconnection structures

FPGA - Field Programmable Gate Array

Row of interconnection resources in a FPGA with architecture

For example, Actel-i Act-1, Act-2 FPGA-d

Example: realisation of function based on MUX-s.

$$Y = X_1 X_2 + X_1 X_3$$

What does what? And where's the PC?

- The recurrence formulae for filters, voice compression, noise limiting, even FFT, Third method ssb, IQ demodulator interpretation etc, etc can all be realized within the logic blocks*
- Which is selected depends on the control of the interconnection busses.
- The PC does the bus control, and most often displays the FFT o/p as a wideband spectrum, and Audio to speaker/earphones
 - * other functionality splits are possible

Conclusions

- You should now have a feeling for SDR!
- Building your own kit will require additional skills e.g. full understanding of sampled data systems and digital signal processing algorithms plus FPGA or DSProcessor development environments.
- I have investment in a more traditional TXVR can I link to the SDR world?

Conclusions (cont'd)

- Recent TXVRs like the TS-590 already do a lot of SDR but using an internal processor not a PC! (software updates with improved functionality are regular.)
- Can I link my recent TXVR to a PC for control and extra features like wideband pan-adaptor?
 - Depends on the rig, but people have started to devise this. e.g.

http://homepage.ntlworld.com/wadei/HOWTO_TS-590S_with_SDR_IQ.pdf

THE END

Questions....?